Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death.
نویسندگان
چکیده
The pancreatic beta cell can respond in the long term to hyperglycemia both with an increased capacity for insulin production and, in susceptible individuals, with apoptosis. When glucose-induced apoptosis offsets the increasing beta cell capacity, type 2 diabetes results. Here, we tested the idea that the pathway of glucose metabolism that leads to the modification of intracellular proteins with the O-linked monosaccharide N-acetylglucosamine (O-GlcNAc) is involved in the glucose-induced apoptosis. This idea is based on two recent observations. First, the beta cell expresses much more O-GlcNAc transferase than any other known cell, and second, that the beta cell-specific toxin, streptozotocin (STZ), itself a GlcNAc analog, specifically blocks the enzyme that cleaves O-GlcNAc from intracellular proteins. As a consequence, we now show that hyperglycemia leads to the rapid and reversible accumulation of O-GlcNAc specifically in beta cells in vivo. Animals pretreated with STZ also accumulate O-GlcNAc in their beta cells when hyperglycemic, but this change is sustained upon re-establishment of euglycemia. In concert with the idea that STZ toxicity results from the sustained accumulation of O-GlcNAc after a hyperglycemic episode, we established a low-dose STZ protocol in which the beta cells' toxicity of STZ was manifest only after glucose or glucosamine administration. Transgenic mice with impaired beta cell glucosamine synthesis treated with this protocol are resistant to the diabetogenic effect of STZ plus glucose yet succumb to STZ plus glucosamine. This study provides a causal link between apoptosis in beta cells and glucose metabolism through glucosamine to O-GlcNAc, implicating this pathway of glucose metabolism with beta cell glucose toxicity.
منابع مشابه
Proteomic analysis of O-GlcNAc modifications derived from streptozotocin and glucosamine induced beta-cell apoptosis.
The post-translational modifications of Ser and Thr residues by O-linked beta-N-acetylglucosamine (O-GlcNAc), i.e., O-GlcNAcylation, is considered a key means of regulating signaling, in a manner analogous to protein phosphorylation. Furthermore, it has been suggested that the increased flux of glucose through the hexosamine biosynthetic pathway (HBP) stimulates O-GlcNAcylation, and that this m...
متن کاملO-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic beta cells.
O-GlcNAc transferase (OGT)-mediated modification of protein Ser/Thr residues with O-GlcNAc influences protein activity, similar to the effects of phosphorylation. The anti-apoptotic Akt1 is both activated by phosphorylation and modified with O-GlcNAc. However, the nature and significance of the Akt1 O-GlcNAc modification is unknown. The relationship of O-GlcNAc modification and phosphorylation ...
متن کاملNuclear pore complex glycoproteins contain cytoplasmically disposed O- linked N-acetylglucosamine
A novel form of protein-saccharide linkage consisting of single N-acetylglucosamine (GlcNAc) residues attached in O-linkages directly to the polypeptide backbone has been described (Holt, G. D., and G. W. Hart, 1986, J. Biol. Chem., 261:8049-8057). This modification was found on proteins distributed throughout the cell, although proteins bearing O-linked GlcNAc moieties were particularly abunda...
متن کاملO-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death.
We previously demonstrated that the O-linked beta-N-acetylglucosamine (O-GlcNAc) posttranslational modification confers cardioprotection at least partially through mitochondrial-dependent mechanisms, but it remained unclear if O-GlcNAc signaling interfered with other mechanisms of cell death. Because ischemia/hypoxia causes endoplasmic reticulum (ER) stress, we ascertained whether O-GlcNAc sign...
متن کاملHsp90 regulates O-linked β-N-acetylglucosamine transferase: a novel mechanism of modulation of protein O-linked β-N-acetylglucosamine modification in endothelial cells.
O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins is involved in many important cellular processes. Increased O-GlcNAc has been implicated in major diseases, such as diabetes and its complications and cardiovascular and neurodegenerative diseases. Recently, we reported that O-GlcNAc modification occurs in the proteasome and serves to inhibit proteasome function by blocking the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 6 شماره
صفحات -
تاریخ انتشار 2000